
PowerQuery
A Beginners Course

PAGE 1

1

Course
Objectives

Be able to
familiarize with
Query Editor
layout

01
Be able to learn
the fundamentals
for PowerQuery

02
Be able to learn
the fundamentals
of M-Language

03
Be able to learn
the fundamentals
of Data Modelling

04

2

Your Facilitator

• Franco Angelo Cipriano

• Founder of Cocotech Solutions

• Bachelor and Masters Degree in IT

• Have been using MS Tools since 2008

• Have been training MS Excel since 2016

PAGE 3
First Skill Second Skill

3

Introduction
Get to know PowerQuery

PAGE 4

4

Power Query

 This is a data transformation and data preparation engine.

 Allows you to perform ETL operation (Extract > Transform
> Load)

 Has a GUI for getting data from sources and perform the
transformation. Query Editor

 Essential tool in data modelling

 Included in 2016 and later versions. 2013 and earlier
versions needs Add-ins to be installed.

PAGE 5

5

How Power Query helps in ETL

PAGE 6

Existing challenge How does Power Query help?

Finding and connecting to data is too difficult Power Query enables connectivity to a wide
range of data sources, including data of all
sizes and shapes.

Experiences for data connectivity are too
fragmented

Consistency of experience, and parity of
query capabilities over all data sources.

Data often needs to be reshaped before
consumption

Highly interactive and intuitive experience for
rapidly and iteratively building queries over
any data source, of any size.

6

How Power Query helps in ETL

PAGE 7

Existing challenge How does Power Query help?
Any shaping is one-off and not repeatable Steps are recorded as you create your query

in Power Query.

Volume (data sizes), velocity (rate of change),
and variety (breadth of data sources and data
shapes)

Power Query provides connectivity to
hundreds of data sources and over 350
different types of data transformations for
each of these sources, you can work with data
from any source and in any shape.

7

Power Query Editor

 Is the GUI (Graphical User Interface) used to transform your query.

 This makes transformation a lot easier. No coding needed.

 Power Query converts steps to M Language automatically

 Included pre-built transformation engine functions

PAGE 8

8

Power Query M Language

 The Power Query engine uses a scripting language behind the scenes for all Power Query
transformations: the Power Query M formula language, also known as M.

 Anything that happens in the query is ultimately written in M.

 This allows you to customize the query and build a more dynamic query.

PAGE 9

9

Opening the Query Editor

PAGE 10

10

Get Data

 You can get data from multiple sources

 You can transform this data and combine them using Power Query

PAGE 11

11

Transforming Data

 We start by selecting the data source

 Click the Transform Data

 Or select Combine & Transform Data

 Selecting Combine & Load will automatically
load your data in an MS Excel worksheet

PAGE 12

https://services.odata.org/V4/Northwind/Northwind.svc/

12

Power Query Editor

PAGE 13

1.Ribbon: the ribbon navigation experience, which provides multiple tabs to add
transforms, select options for your query, and access different ribbon buttons to
complete various tasks.
2.Queries pane: a view of all your available queries.
3.Current view: your main working view, that by default, displays a preview of the
data for your query. You can also enable the diagram view along with the data
preview view. You can also switch between the schema view and the data preview
view while maintaining the diagram view.
4.Query settings: a view of the currently selected query with relevant information,
such as query name, query steps, and various indicators.
5.Status bar: a bar displaying relevant important information about your query,
such as execution time, total columns and rows, and processing status. This bar also
contains buttons to change your current view.

13

Ribbon

PAGE 14

Home
Transform
Add Column
View

14

Home Ribbon

 This is where you can:
 Manage Query
 Remove rows and columns
 Transform columns
 Combine Queries
 Manage Parameters
 Manage data source

PAGE 15

15

Transform Ribbon

 This ribbon provides you more commands for transformation.

 This allows you to transform the whole table

PAGE 16

16

Add Column Ribbon

 This allows you to add different types of columns

PAGE 17

17

View Ribbon

 Allows you to manage the view of your query editor

PAGE 18

18

Creating a query

 You start creating query by selecting your data source

 You can only select one source at a time, then combine them
later

PAGE 19

http://finance.yahoo.com/q/hp?s=MSFT

19

Creating a query

 You will see a preview of the data
available from your source.

 You have an option to combine them
right away or transform the data

 Selecting Transform Data will take you
to the Query Editor

PAGE 20

20

Queries

 You will see available queries in the Queries Panel

 You can delete, duplicate, move query

PAGE 21

21

Applied Steps

 This is the recording of steps performed to transform the query

 You can go back to the step and change it

PAGE 22

Demo and explain applied steps

22

Let’s Try

PAGE 23

23

Transforming Columns

 Power Query allows you to transform the columns according to your data model

 Transforming allows you to remove, add, or edit columns, while retaining the original state of the
columns from the source file.

PAGE 24

24

Data Types

 The column can be assigned with a data type.

 It is important to select the right data type for the column

 Power Query can detect data type of the value in the column

PAGE 25

25

Replacing Values

 This allows you to find and
replace values in a each row

PAGE 26

26

Removing Columns

 Allows you to keep or remove selected columns

PAGE 27

27

Text Columns

 Split Columns

 Format Columns

 Extract characters

 Parsing

PAGE 28

28

NULL Rows

 Power Query gives you a hint that your rows have NULL or blank values

 The indicator bar shows that the there is a blank or NULL

PAGE 29

29

Pivot Columns

 Allows you to create a table that contains an aggregate value for each unique value in a column.

PAGE 30

Demo Pivot table

30

Group By

 group values in various rows into a single value by grouping the rows according to the values in
one or more columns. You can choose from two types of grouping operations:

 Column groupings.
 Row groupings.

PAGE 31

31

Advanced Group By

 Allows you to group multiple Columns and
perform multiple aggregations.

PAGE 32

32

Let’s Try

PAGE 33

• Create a duplicate of CA query
• Group the totals sales by Child ASIN

33

Adding Columns

 Allows you to add new columns without changing the raw data

 You can add custom columns using M Language

 You can add column using an IF statement

 You can add columns based on values

PAGE 34

34

Add Custom Column

 This will create a new column based on the
formula you specified.

PAGE 35

35

Conditional Columns

 Allows you to add new columns based on a conditional statement

PAGE 36

36

Other Add Columns

 From Text

 From Number

 From Date & Time

PAGE 37

37

Combining Queries

Merge Queries
Append Queries

There are two primary ways of combining queries: merging and appending.

•When you have one or more columns that you’d like to add to another query,
you merge the queries.
•When you have additional rows of data that you’d like to add to an existing query,
you append the query.

38

Merge Queries

 Joins the records from one query to the records in
another by matching on a unique identifier.

 The kind of join you apply is important because it
determines which records are returned from each data
set.

 You can merge it to an existing query

 You can merge it as a new query

PAGE 39

39

JOIN Kinds

Unlike SQL, you can only JOIN 2 tables at a time.

40

LEFT Outer Join

left outer join keeps all the rows from the
left table and brings in any matching rows
from the right table

<demo>

41

RIGHT Outer Join

right outer join, which keeps all the rows
from the right table and brings in any
matching rows from the left table

<demo>

42

FULL Outer Join

full outer join, which brings in all the rows
from both the left and right tables

<demo>

43

INNER Join

inner join, which brings in only
matching rows from both the left and
right tables.

<demo>

44

LEFT anti join

left anti join, which brings in only rows
from the left table that don't have any
matching rows from the right table

<demo>

45

RIGHT anti join

right anti join, which brings in only rows
from the right table that don't have any
matching rows from the left table

<demo>

46

Fuzzy Matching

Fuzzy merge is a smart data preparation
feature you can use to apply fuzzy matching
algorithms when comparing columns, to try to
find matches across the tables that are being
merged

<demo>

47

Append Queries

The append operation creates a single
table by adding the contents of one or
more tables to another, and aggregates
the column headers from the tables to
create the schema for the new table.

When tables that don't have the same column headers are appended, all column headers from all tables are
appended to the resulting table. If one of the appended tables doesn't have a column header from other tables,
the resulting table shows null values in the respective column, as shown in the previous image in columns C and
D.

NOTE

<demo>

48

Let’s Try

PAGE 49

49

Introduction to
M Language

PAGE 50

50

M Language

 M is a functional programming language
 computation through evaluation of mathematical functions
 Programming involves writing expressions instead of statements
 M does not support changing state or mutable data
 Every query is a single expression that returns a single value
 Every query has a return type

 Get Started with M
 Language is case sensitive
 It's all about writing expressions
 Query expressions can reference other queries by name

PAGE 51

51

Let Statement

 Queries usually created using let statement
 Allows a single expressions to contain inner expressions
 Each line in let block represents a separate expression
 Each line in let block has variable which is named step
 Each line in let block requires comma at end except for

last line
 Expression inside in block is returned as let statement

value

52

Comments and Variable names

 M supports using C style comments
 Multiline comments created using /**/
 Single line comments created using //

 Variable names with spaces must be enclosed in #"
 Variable names with spaces created automatically by

query designer

53

Flow of Statement Evaluation

 Evaluation starts with expression inside in block
 Expression evaluation triggers other expression

evaluation

54

Will This M Code Work?

 Yes, the Mashup Engine has no problem with this
 The order of expressions in let block doesn't matter
 However, the Power Query designer might get confused

55

Data Types

56

Values

 This is the data produced by evaluating an expression.

57

Types

 Primitive types, which classify primitive values (binary,
date, datetime, datetimezone, duration, list, logical, null,
number, record, text, time, type) and also include a
number of abstract types (function, table, any, and
none)

 Record types, which classify record values based on field
names and value types

 List types, which classify lists using a single item base
type

58

Types

 Function types, which classify function values based on
the types of their parameters and return values

 Table types, which classify table values based on column
names, column types, and keys

 Nullable types, which classifies the value null in addition
to all the values classified by a base type

 Type types, which classify values that are types

59

M Type System

 Built in types
 any, none, null, logical, number, text, binary, time, date,

datetime, datetimezone , duration

 Complex types
 list, record, table, function

 User defined types
 You can create custom types for records and tables

60

Examples of programming with M Datatypes

let
var =123,
var2= true,
var3="text value",
var4=null,

function1 = (x) =>x*2,
output = function1(var)

in
output

61

Initializing Dates and Times

62

Operators

 Types of operator arranged by precedence
 Primary – i, (), x[i],x{y}, x(..),{x,y,…},[i=x…]
 Unary - +x, -x, not x
 Metadata – x meta y
 Multiplicative - *,/
 Additive - +,-
 Relational - <, >, <, <=,>=
 Equality - =,<>
 Type assertion – x as y
 Type conformance – x is y
 Logical AND – x and y
 Logical OR – x or y

63

Lists
 List is a single dimension array

 Literal list can be created using { } operators
 List elements accessed using { } operator and zero-based index

• User { }? to avoid error when index range is out-of-bounds

64

Text.Select

 Text.Select can be used to clean up text value
 You create a list of characters to include

65

Records
 Record contains fields for single instance of entity

• You must often create records to call M library functions

66

Combination Operator (&)

 Used to combine strings, arrays and records

67

Table.FromRecords

 Table.FromRecords can be used to create table
 Table columns are not strongly typed

Creating a table

let
CustomersTable = Table.FromRecords({

[#"First Name" = "Bruce",LastName="Wayne"],
[#"First Name" = "Clark",LastName="Kent"],
[#"First Name" = "Barry",LastName="Allen"],
[#"First Name" = "Dianna",LastName="Prince"]

})
in

CustomersTable

68

IF Statement

 if-expression selects from two expressions based on the
value of a logical input value and evaluates only the
selected expression.

if 2 > 1 then 2 else 1 // 2
if 1 = 1 then "yes" else "no" // "yes"

69

NESTED IF

 Allows you to create multiple condition

 Conditional Column will generate the IF or Nested IF
Statement

if [Country] = "CA" then "CAD" else if [Country] = "UK" then "GBP" else if [Country] = "US"
then "USD" else null

70

Catching Errors

 Error handling in M done using try .. Otherwise

 Error handling can avoid evaluation errors

 Expression causing errors replace with value such as
null

71

Creating User-defined Types

 M allows you to create user defined types
 Here is a user defined type for a record and a table

• User defined table used to create table with strongly typed columns

72

Custom Functions

 This allows you to create functions that you can reuse in
different queries.

 It can have a parameter, or with no parameter

PAGE 73

Demo

73

Creating a Function Query

 You can write a function by wrapping the whole let statement

74

Calling a Function Query

75

Parameters

 A parameter query is a kind of query that relies on one or more parameters to run

 A parameter query is one where you provide the parameters

PAGE 76

76

Let us Try

PAGE 77

77

Loading to worksheet

 To load your queries you can click Close & Load button

 Unlike PowerBI, MS Excel Power Query will load all your query
to your worksheet.

PAGE 78

78

Selecting which to load

 Disabling Load to Worksheet by default

 File > Options & Settings > Query Options > Data
Load tab

 Under Default Query Load Settings. Load to
Worksheet is checked by default.

 Uncheck to refrain loading queries to Worksheet

PAGE 79

79

Selecting which to load

 Queries not loaded will show “Connection only” status.

 Right click the query you want to load, and select Load To…

 Select where and how you want to load your data

PAGE 80

80

Refresh Data Source

 You can refresh your data from the worksheet or from the query editor

 This will perform the steps you have created, no need to redo the steps.



PAGE 81

81

Let’s Try

PAGE 82

82

THANK YOU!

PAGE 83

83

