

PowerBI

Training

i

ii

Table of Contents

Chapter 1: Overview ... 1

What is Business Intelligence? .. 1

How Business Intelligence was done before .. 1

Layers of PowerBI ... 2

Power Query Layer.. 2

Data Model Layer .. 3

Data View .. 3

Model View ... 3

Data Visualization Layer .. 4

How data flows in PowerBI ... 5

Chapter 2: Data Model Layer .. 6

Data Modeling... 6

What is an efficient data model? .. 6

Data Modeling using Agile approach .. 7

Preparing Your Data .. 8

Get and Transform Data ... 8

Connection to a Folder .. 8

Connecting to files .. 8

Connecting to MySQL Database ... 8

Transforming Data .. 9

Modeling Schema ... 10

Transactional vs Star schema Model .. 10

Snowflakes Model ... 10

Star Schema vs Snowflake Schema ... 11

Combining Files ... 12

Things to remember when combining files .. 12

Transforming Your Data .. 13

Renaming Queries ... 13

Data Types ... 13

Removing columns and rows .. 14

Removing Records .. 14

Removing Duplicates... 15

Group By ... 15

Splitting Columns .. 16

iii

Combining Queries.. 17

Append Queries .. 17

Merge Queries .. 19

Adding Columns .. 24

Applied Steps and Advance Editor .. 26

Using Query Parameters ... 27

Using Functions ... 29

Invoking Functions as Column .. 29

Best Practices in Power Query .. 30

Chapter 3: Data Model Layer .. 32

Model View ... 32

Data View .. 32

Model View ... 32

Report View .. 33

DAX – Data Expressions .. 33

DAX vs Excel .. 33

Data Types ... 34

Operators .. 34

Arithmetic Operators .. 34

Conditional Operators ... 34

Logical Operators .. 35

Conditional Statement .. 36

IF Statement .. 36

Nested IF ... 36

SWITCH Function .. 36

Calculated Columns and Measures ... 37

Calculated Columns... 37

Measures ... 38

Utilizing Quick Measures... 38

Calculated Columns vs Measures.. 39

When to use .. 39

Calculated Tables .. 39

Variables ... 41

Relationships ... 41

Relationship Cardinality .. 41

iv

Cross Filter Direction ... 42

Handling Many-to-Many Relationship .. 42

Adding and Editing Relationships ... 42

Chapter 4: DAX Functions ... 44

Table functions .. 44

Iterator Functions ... 46

Aggregate vs Iterator Functions .. 46

Chapter 5: M Language ... 48

Introduction to M Language ... 48

Let Statement .. 48

Comments and Variable names .. 48

Statement Evaluation .. 49

Data Types ... 49

Operators .. 50

Conditional Statement .. 50

Custom Function Queries ... 51

Chapter 6: Data Visualization .. 52

MS Office Store Visuals ... 52

Drill Through in Visuals ... 53

Chapter 7: Publishing your data .. 56

Row Level Security .. 56

Define Roles .. 56

Validating Your Roles .. 57

Enhanced Row-Level Security Editor .. 58

Managing Security in your Model ... 58

Considerations and limitations ... 59

1

Chapter 1: Overview

What is Business Intelligence?
Is a software that ingests business data and presents it in user-friendly views such as reports,

dashboards, charts and graphs. BI offers a way for people to examine data to understand trends and

derive insights.1

Business intelligence refers to the processes and tools used to analyze business data, turn it into

actionable insights, and help everyone in an organization make better-informed decisions. Also

known as a decision support system (DSS), a BI system analyzes current and historical data and

presents findings in easy-to-digest reports, dashboards, graphs, charts, and maps that can be shared

across the company.

BI is sometimes called “descriptive analytics” because it describes how a business is performing

today and how it performed in the past. It answers questions like “What happened?” and “What

needs to change?” – but it does not get into why something happened or what might happen next.2

How Business Intelligence was done before
Business Intelligence was an expensive and extensive activity before in a business. This will require

multiple resource in a company.

1 https://www.ibm.com/topics/business-intelligence

2 https://www.sap.com/products/technology-platform/cloud-analytics/what-is-business-

intelligence.html

2

PowerBI is a self-service BI tool that allows you to generate visualizations, and at the same time

process data from different sources. This allows users to perform ETL (Extract – Transform – Load)

process using a single application.

Layers of PowerBI
PowerBI have different layers that distinguish different parts and functionality of Business

Intelligence. These layers are:

• Power Query Layer

• Data Model Layer

• Data Visualization Layers

Power Query Layer
In this layer you make your data preparation. You get data from various data sources and transform

it to make it available for other layers.

Business Analyst Reports Creator Data Analyst

Create Business
Requirements

Extract, Transform,
and Load Data

Confirms data
integrity

3

Data Model Layer
This layer has two views, the Data View and Model View.

Data View
The Data View allows you to see the data in a tabular format. Table format gives users more

familiarity on how their data looks like in their query.

Model View
The Model View gives users a glimpse on how queries or tables are related to each other. This also

allow users to create relationship between tables.

4

Data Visualization Layer
This layer is the Report View, which is the default view of PowerBI. This layer gives you access to

different visualization tools. These tools allow you to show your data in a more appealing visual

manner. This allows you to understand your data a lot easier.

5

How data flows in PowerBI
Each layer of PowerBI is responsible in the flow of data. It is important to have a good understanding

of each layer for easier troubleshooting. For example, if you have an error in your line graph that

uses a measure that is dependent on a calculated column you know that a measure or calculated

column uses DAX Expressions, and it is not in the Power Query Layer.

6

Chapter 2: Data Model Layer

Data Modeling
Data modeling is undoubtedly one of the most important parts of Power BI development. The

purpose of data modeling in Power BI is different from data models in transactional systems. In a

transactional system, the goal is to have a model that is optimized for recording transactional data.

Nevertheless, a well-designed data model in Power BI must be optimized for querying the data and

reducing the dataset size by aggregating that data.

When modeling data in Power BI, you need to build a data model based on the business logic.

Having said that, you may need to join different tables and aggregate your data to a certain level

that answers all business-driven questions. It can get worse if you have data from various data

sources of different grains representing the same logic.

Data modeling in PowerBI is done in the Query Editor. To access the query editor, you can select the

Transform.

What is an efficient data model?
Efficiency in your data model is important to obtain sustainability. Your data model should be Easy

to Understand, and Easy to maintain.

A data model should be able to do the following:

7

• Perform well (quickly) – It should be able to deliver the needed information to the user in a quick
manner.

• Be business-driven – It should answer business questions, and come up with insights for business
decision.

• Decrease the level of complexity (be easy to understand) – Lets users understand the data easily.

• Be maintainable with low costs – Build the dashboard and maintain them in a cost-efficient
manner

“You need to talk to the business and ask questions before starting the job”

• We need to ask questions of the business to avoid any confusions and potential reworks in the future.

• We need to understand the technology limitations and come up with solutions.

• We have to have a good understanding of data modeling, so we can look for common data patterns
to prevent overlaps.

Data Modeling using Agile approach
Agile and iterative approach is the best methodology in developing your data model. It keeps all

parties involved which allows faster development and clearer goals.

1. Information gathering from the business
2. Data preparation based on the business logic
3. Data modeling
4. Testing the logic
5. Demonstrating the business logic in a basic data

visualization

8

Preparing Your Data
Get and Transform Data
The first step in creating your dashboard begins in Power BI Desktop where you connect to and

transform your data in preparation for data modeling. Data can come from different sources. These

data sources can be a folder path, shared drive, files, databases, API (Application Program Interface)

and other data repositories.

Connection to a Folder
PowerBI allows you to connect to a local folder, or a shared folder, given that you have the windows

explorer link. This pulls all the supported files inside the folder. During transformation, you can filter

the file types you will need in your query.

Connecting to files
PowerBI supports connection to different types of files, like CSV, XLSX, HTML. When connecting to

an MS Excel file (xlsx). It will show you all available sheets and tables inside the workbook.

HTML connection only supports <table> tags. Data inside a <div> tag will not be pulled by PowerBI.

Connecting to MySQL Database
To connect to a database, you will need a connector. For a MySQL database you will need the MySQL

connector/Net (https://downloads.mysql.com/archives/c-net/). Currently, it only supports the

MySQL connection version 8.0.26.

You will get an error when you try to connect to a MySQL server host without a connector.

9

Transforming Data
After selecting and connecting to a data source you have an option to transform your data. Data

transformation is the process of converting raw data into a structured and usable format, crucial for

effective Business Intelligence (BI) implementation. It involves cleansing, aggregating, and

integrating data from multiple sources to create a unified view. Data transformation is vital as it

enhances data quality, consistency, and accuracy, enabling better-informed decision-making.

By providing actionable insights and uncovering patterns, PowerBI empowers organizations to

identify opportunities, optimize processes, and gain a competitive edge. In essence, data

transformation is the backbone of BI, ensuring businesses extract meaningful value from their data

assets, leading to improved efficiency and strategic growth.

As a self-service BI tool, PowerBI have built-in features that will allow you to transform data easily.

There is not need for a programming background to use these features.

10

Modeling Schema
Transactional vs Star schema Model
Transactional and star schema models are two distinct data modeling approaches in Business

Intelligence (BI). The transactional model follows a normalized structure, storing data in separate

tables to reduce redundancy and maintain data integrity. While it's efficient for data storage and

updates, it may require complex joins for analysis.

On the other hand, the star schema model denormalizes data into a central fact table connected to

dimension tables, simplifying queries and enhancing performance for analytical tasks. While it

consumes more storage space, the star schema accelerates BI reporting and facilitates easier data

exploration, making it popular for decision-making purposes. The choice between these models

depends on the specific BI requirements and trade-offs between storage efficiency and analytical

speed.

Fact tables contain numerical values, often called measures or metrics, and foreign keys that link to

the associated dimension tables. These dimension tables provide descriptive information or

attributes related to the measures in the fact table.

Snowflakes Model
It is an extension of the star schema model, where dimension tables are further normalized into

multiple related tables. In the snowflake model, dimension tables are broken down into sub-

dimensions, reducing data redundancy and improving data integrity.

The benefit of the snowflake model lies in its ability to save storage space by reducing redundancy

and maintaining data consistency. However, it can lead to more complex queries due to the need for

11

additional joins across the normalized tables. The choice between the star schema and the

snowflake model depends on the specific requirements of the data warehouse and the trade-offs

between query performance and storage efficiency.

In this schema, the single dimension table of the item has been normalized and split, resulting in the

creation of a new supplier table that includes information on the type of supplier. Likewise, the

dimension table of location has been normalized, and its data has been split into a new city table

that contains details of each specific city

Star Schema vs Snowflake Schema
Star Schema Snowflake Schema

Maintenance/Change

It has more redundant data, and hence it is more

difficult to change or maintain

This schema is easier to change and maintain due

to less redundancy

Understandability

The complexity of the query is less and hence

easy to understand

Queries applied are more complex and hence

difficult to understand

Query Execution Time

12

If has fewer foreign keys, and hence the query

execution is faster and takes lesser time

Due to more foreign keys, the query execution

time is more, or the query executes slowly.

Type of Data Warehouse

Better for datamarts having single relationship,

1:1 or 1:M.

Better for complex relationships: M:M

relationship

Number of Joins

It has a greater number of joins It has lesser number of joins

Dimension Table

It has only one dimension table for each

dimension

It has one or more dimension table for a single

dimension.

Usability

Preference to the star schema when the

dimension table has a smaller size

Good to use when the size of the dimension table

is bigger

Normalization and Denormalization

Both the fact table and dimension tables are

denormalized

A fact table is denormalized, while dimension

table is normalized.

Data Model

If follows a top-down approach It follows a bottom-up approach.

3

Combining Files
PowerBI allows you to combine files with the same schema into a single logical table. Combining files

is usually done for data source coming from a folder.

Things to remember when combining files
• Can be used on files in the same folder

• Same file type and structure

3 https://www.educba.com/star-schema-vs-snowflake-schema/

13

• Same column names (case sensitive)

• Same number of columns

• Any changes to the exemplar query are automatically generated in the linked function query.

Transforming Your Data
Transforming data in BI involves converting raw, disparate data into a unified, structured format for

analysis. It includes cleansing, aggregating, and integrating data from various sources, enabling

meaningful insights, informed decision-making, and a competitive edge for businesses.

Renaming Queries
You can rename the query name by changing it in the Query Settings, Properties field.

Data Types
PowerBI can automatically convert the possible data type of the column after you selected

Transform data.

You can disable Automatic detection of data type from the File Tab > Option and Settings > Options

> Data Load.

14

Having the proper data type assigned to a column can improve performance of the query. Having

the wrong value converted to a certain data type will give you an Error in your row (i.e.

“07/01/2023” convert to Duration or Boolean).

Removing columns and rows
You can remove columns in Power Query. There are 2 options of removing columns, you can either

remove the selected column or remove the other columns aside from those selected.

Removing Records
Removing the records basically is just hiding or deselecting the rows. These rows will not be included

when the query is loaded.

15

Aside from using the column filter, PowerBI have built-in options for removing rows. You can remove

the blank rows, rows with errors and even top or bottom rows.

Removing Duplicates
You can also remove the duplicate records from your query. By selecting the columns you want to

specify the duplicates, you can set one or more columns to check for duplicates.

Group By
The Group By command allows you to aggregate or summarize the data based on the column your

selected.

This allows you to select an aggregate function to group by one or more columns.

16

Splitting Columns
PowerBI allows you to split columns into new columns. There are multiple ways to split a column.

The most common is by Delimiter.

When selecting By Delimiter, there are options for users to split it by Left-most delimiter, Right-

most delimiter, or by Each occurrence of the delimiter.

For special characters as delimiter, you can select Custom as delimiter and check Split using special

characters.

17

Combining Queries
There are two (2) ways of combining queries: Merge Queries and Append Queries. Unlike combining

files, combining queries can combine two or more queries with different schema to create a new

query.

Append Queries
The append operation creates a single query by adding the contents of one or more query to

another, and aggregates the column headers from the queries to create the schema for the

new table.

As you can see, if the tables have different column headers all column headers are appended and

added to the new table. This will result to null record on the tables that does not have a column

header from other tables.

18

The append operation requires at least two tables. You can append a query to an existing query, or

create a new query which appends two or more queries.

Append to existing query

When appending to an existing query using Two Tables, the dialog box will ask you which table you

want to append to the existing one.

While for Three or more tables, you will see which table you are currently in, and you can select the

tables your want to append to your current one.

Append to new query

When appending two tables to a new query, the dialog box will ask you for the first and second table

you want to append.

19

While for three or more tables, you can select which tables you want to append by adding it to the

Tables to append list.

The tables will be appended in the order in which they're selected, starting with the Primary table

for the Two tables mode and from the primary table in the Tables to append list for the Three or

more tables mode.

Merge Queries
Merging queries requires the concept of joining tables in database. There are different types of JOIN

that you can use in merging queries. The join has different behavior based on the requirement of

your query.

Merge queries uses a common field or key to join to one or more table.

20

Types of JOIN

LEFT Outer Join

LEFT outer join keeps all the rows from the left table and brings in any matching rows from the right

table

21

RIGHT Outer Join

RIGHT outer join, which keeps all the rows from the right table and brings in any matching rows

from the left table

FULL Outer Join

FULL outer join, which brings in all the rows from both the left and right tables.

22

INNER Join

INNER join, which brings in only matching rows from both the left and right tables.

LEFT anti join

LEFT Anti Join, which brings in only rows from the left table that don't have any matching rows from

the right table.

RIGHT anti join

RIGHT Anti Join, which brings in only rows from the right table that don't have any matching rows

from the left table.

23

Fuzzy Matching

Fuzzy merge is a smart data preparation feature you can use to apply fuzzy matching algorithms

when comparing columns, to try to find matches across the tables that are being merged.

24

Adding Columns
You can add columns in your existing query. This column will only be loaded in PowerBI and not to

your source file. Most of the time you will add a column for derived values. Derived values or

columns are columns that are not included in the source of your query. You usually add it by using

operators between two different columns.

Add a column from examples

When you add columns from examples, you can quickly and easily create new columns that meet

your needs. This is useful for the following situations:

• You know the data you want in your new column, but you're not sure which transformation, or
collection of transformations, will get you there.

• You already know which transformations you need, but you're not sure what to select in the UI to
make them happen.

• You know all about the transformations you need by using a custom column expression in the M
language, but one or more of those transformations aren't available in the UI.

When adding a column from example, PowerBI will ask you for some sample values to be used as

the reference I creating the column.

Add Index Columns

The Index column command adds a new column to the table with explicit position values, and is

usually created to support other transformation patterns.

25

By default, the index starts at 0 or 1, but you can specify it using the Custom dialog box.

Add a custom column

This feature allows you to add custom columns using Powe Query M Language. You can use

operators or conditional statement to create your custom column.

Add a conditional column

Conditional columns allows you to create columns based on conditions applied to other columns in

your table. Multiple conditions uses an IF ELSEIF condition, the ELSE field at the bottom is where you

can put your default value, in case the value does not meet all the conditions stated.

26

Duplicate Column

This feature creates a copy of the column selected. This is in case you want to transform your

column and still preserve the original value.

Applied Steps and Advance Editor
The Applied Steps serves as the record or logs of the steps you did in your data transformation. This

also allows you to go back to the previous step and correct the step that causes error in your query.

Each step is a visual representation of a Power Query M Language. When you click a step, you can

see in the formula bar the corresponding M language equivalent for the step.

27

To view the whole steps as an M Language you can go to the Advanced Editor

M Language is a functional programming language. We will discuss M Language further in the next

chapters.

Using Query Parameters
Parameters serves as a way for you to easily store and manage values. These values can be reused in

your query.

Parameters give you flexibility in changing the output of your query. This also used for:

• Changing the argument values for particular transforms and data source functions.

• Inputs in custom functions.

28

You can create a parameter from the following suggested values:

• Any Value – Allows you to enter your value manually

• List of Values – Allows you to define a list of suggested values which you can later select from for the
Current Value, and you can set your Default Value.

• Query – Uses a list query (a query whose output is a list) to provide the list of suggested values that
you can later select for the Current Value.

A parameter can be used in many different ways, but it's more commonly used in two scenarios:

• Step argument: You can use a parameter as the argument of multiple transformations driven from
the user interface (UI).

• Custom Function argument: You can create a new function from a query and reference parameters as

the arguments of your custom function.

You can also convert an existing query in to a parameter. By right clicking the query and select

Convert to Parameter. You can also do the other way around, by converting a parameter into a

query. Both can still be used as arguments to a step or function.

29

Using Functions
Functions allows you to create steps and save it so that it can be reused by another query. This

feature allows you not only easily change your query, but also reduce the errors from duplicate

transformation steps.

A custom function is a mapping from a set of input values to a single output value, and is created

from native M functions and operators.

Invoking Functions as Column
With a new function created, you can use this function to another query. You will need to enter the

data needed for the parameters to perform the function.

30

Best Practices in Power Query
Choose the right connector

Using the best connector for the task will provide you with the best experience and

performance

Filter early

This will let you better focus on your task at hand by only showing data that’s relevant in the

data preview section.

Do expensive operations last

When possible, perform such streaming operations first, and do any more expensive operations last.

This will help minimize the amount of time you spend waiting for the preview to render each time

you add a new step to your query.

Temporarily work against a subset of your data

If adding new steps to your query in the Power Query Editor is slow, consider first doing a "Keep First

Rows" operation and limiting the number of rows you're working against. Then, once you've added

all the steps you need, remove the "Keep First Rows" step.

Use the correct data types

It's crucial that you always work with the correct data types for your columns. When working with

structured data sources such as databases, the data type information will be brought from the table

schema found in the database. By default, Power Query offers an automatic data type detection for

unstructured data sources.

Explore your data

Utilize Power Query profiling tools to discover your data.

Document your work

We recommend that you document your queries by renaming or adding a description to your steps,

queries, or groups as you see fit.

31

Take a modular approach

If the query contains a large number of steps, then it might be a good idea to split the query into

multiple queries, where one query references the next.

Create groups

This is a great way of organizing your work.

Future-proofing queries

It's a best practice to define the scope of your query as to what it should do and what it should

account for in terms of structure, layout, column names, data types, and any other component that

you consider relevant to the scope.

Use parameters

Parameters in Power Query help you make your queries more dynamic and flexible. A parameter

serves as a way to easily store and manage a value that can be reused in many different ways.

Create reusable functions

If you find yourself in a situation where you need to apply the same set of transformations to

different queries or values, creating a Power Query custom function that can be reused as many

times as you need could be beneficial.

32

Chapter 3: Data Model Layer

Model View
The next step in our PowerBI journey is the Data Model Layer. After transforming your data using

Power Query. It is now ready to be loaded in your Data Model View. The Data Model Layer has 2

views: Data View and Model View.

Data View
The Data View shows your data in tabular format. It allows you to see the records in your table. This

allows you to do additional data modeling like adding columns, filtering rows, and Measures.

Model View
The Model View allows you see the relationship between your tables/queries. You can also manage

the relationships, create, edit, and remove relationships. With the Model View, you can easily see

the cardinality of the relationship.

33

Report View
This the default view of PowerBI. You can see the different commands you can use to create your

dashboard.

1. Tables
2. Fields
3. Visuals
4. Visual Properties
5. Filter Option
6. Canvas
7. Page
8. Menu
9. View Type

DAX – Data Expressions
In this layer you will be looking into a different kind of language for your data modeling. DAX is

designed to specifically compute business formulas over a data model.

We can compare DAX with Excel formula. Most likely, if you are familiar with Excel Formulas, DAX

will most likely perform the same way an Excel formula does.

DAX vs Excel
Most DAX formulas has the same formula name and behavior as MS Excel formulas. Here are some

items we need to remember about DAX.

• Excel formulas take cell address as reference. DAX formula uses table column or table as reference.
Just like how Excel Table object works.

• Excel has no function that returns a table, but Excel has some function that can work with arrays.
While DAX can reference tables and return tables.

• DAX lookup requires relationship between tables. Excel can use cell reference address.

• Excel supports data with different type in a column, while DAX expects the data to have the same
type in each column.

You use DAX to compute values over columns in tables. You can aggregate, calculate, and search for

numbers but, at the end, all of the calculations involve tables and columns. Thus, the first syntax to

learn is how to reference a column in a table.

Sales[SalesAmount] = Sales[ProductPrice] * Sales[ProductQuantity]

Many functions in DAX work the same as the equivalent Excel function. The IF function,

1

2

3

4

5
6

7

8

9

34

for example, reads in the same way in DAX and in Excel:

Excel IF ([@SalesAmount] > 10, 1, 0)

DAX IF (Sales[SalesAmount] > 10, 1, 0)

Data Types
PowerBI is strict with data types, unlike MS Excel where data types may vary per column, PowerBI

has explicit data type per column.

• Whole Number (Integer)

• Decimal Number (Float)

• Currency (Currency), a fixed decimal number internally stored as an integer

• Date (DateTime)

• Boolean (TRUE/FALSE)

• Text (String)

• Binary large object (BLOB)

Operators
DAX, just like Excel uses operators to perform different calculations. Keep in mind that the

operations follows an order of precedence. It does not perform as a first come first serve.

Arithmetic Operators
Operator Type Symbol Use Example

Parenthesis () Precedence order and grouping

of arguments

(5 + 2) * 3

Arithmetic +

-

*

/

Addition

Subtraction/negation

Multiplication

Division

4 + 2

5 − 3

4 * 2

4 / 2

Conditional Operators
Operator Type Symbol Use Example

35

Comparison =

<>

>

>=

<

<=

Equal to

Not equal to

Greater than

Greater than or equal to

Less than

Less than or equal to

[CountryRegion] =

"USA"

[CountryRegion] <>

"USA"

[Quantity] > 0

[Quantity] >= 100

[Quantity] < 0

[Quantity] <= 100

Logical Operators
Operator Type Symbol Use Example

Text

Concatenation

& Concatenation of strings "Value is" & [Amount]

Logical &&

||

IN

NOT

AND condition between two

Boolean expressions

OR condition between two

Boolean expressions

Inclusion of an element in a list

Boolean negation

[CountryRegion] =

"USA" && [Quantity]>0

[CountryRegion] =

"USA" || [Quantity] > 0

[CountryRegion] IN

{"USA", "Canada"}

NOT [Quantity] > 0

Aside from using the logical operators, you can also use the AND function and OR function to check

two conditions.

AND(<logical1>,<logical2>)

= IF(AND(SUM('InternetSales_USD'[SalesAmount_USD])
 >SUM('ResellerSales_USD'[SalesAmount_USD])
 , CALCULATE(SUM('InternetSales_USD'[SalesAmount_USD]),
PREVIOUSYEAR('DateTime'[DateKey]))
 >CALCULATE(SUM('ResellerSales_USD'[SalesAmount_USD]),
PREVIOUSYEAR('DateTime'[DateKey]))
)
 , "Internet Hit"
 , ""
)

36

OR(<logical1>,<logical2>)

IF(OR(CALCULATE(SUM('ResellerSales_USD'[SalesAmount_USD]),
'ProductSubcategory'[ProductSubcategoryName]="Touring Bikes") > 1000000
 , CALCULATE(SUM('ResellerSales_USD'[SalesAmount_USD]),
'DateTime'[CalendarYear]=2007) > 2500000), "Circle of Excellence"
 , "")

In using AND and OR you need to be familiar of the condition matrix to know what result you will

get.

AND Operator (&&) OR Operator (||)

Cond 1 Cond 2 Result Cond 1 Cond 2 Result

True True True True True True

True False False True False True

False True False False True True

False False False False False False

Conditional Statement
Conditional Statements allows you to perform operation based on specified conditions.

IF Statement
The IF Statement checks for the condition and returns a TRUE statement, and FALSE statement if the

condition is not met.

IF(<logical_test>, <value_if_true>[, <value_if_false>])

Nested IF
Nesting IF statement allows you have multiple conditions and have multiple results for each

condition

SalesCategory = IF(Sales[GrossMargin]>2000,"Cat 2", IF(Sales[GrossMargin]>1000,"Cat

1","NA"))

Once the first condition is met, it will not proceed to read the following conditions.

SWITCH Function
The SWITCH Function evaluates an expression against a list of values and returns one of multiple

possible result expressions. This function can be used to avoid having multiple nested IF statements.

SWITCH(<expression>, <value>, <result>[, <value>, <result>]…[, <else>])

37

= SWITCH (

 [Month Number Of Year],

 1, "January",

 2, "February",

 3, "March",

 4, "April",

 5, "May",

 6, "June",

 7, "July",

 8, "August",

 9, "September",

 10, "October",

 11, "November",

 12, "December",

 "Unknown month number"

)

Calculated Columns and Measures
Calculated Columns
This allows you to create a new column for your table without loading it from your query. Which

means that this column is only visible in your Model View and not in your query. You can add a

column using the New Column command.

If you are in the Reports View you can see the Modeling Tab

If you are in the Model View, you can see the New Column in the Table Tools tab

38

Calculated columns are created using DAX functions. It is physically added in your table and can be

used in creating visuals. Calculated columns you create appear in the Fields list just like any other

field, but they'll have a special icon showing its values are the result of a formula.

In this example the name of your column will be CityState which is the concatenated value of

columns City and State.

CityState = [City] & "," & [State]

Measures
Measures are is useful whenever you do not want to compute values for each row but, rather, you

want to aggregate values from many rows in a table.

A Measure does not appear in the table when viewed in the Model View. But you can use measures

for visualization.

You can easily distinguish a Measure from the other fields, since it has the calculator icon.

You use DAX formula to create measures.

Utilizing Quick Measures
Quick Measures are pre-built measures that you can use, you don’t have to write your own

Measure.

39

You can select different kind of Quick Measures by category. Aggregate, Filters, Time Intelligence,

Totals, Mathematical Operations, and Text.

Calculated Columns vs Measures
Calculated columns and Measures are one way of creating DAX statements. They behave quite the

same but they are completely different.

• Columns and measures can be used in visualization

• Columns appear in the table

• Measures do not appear in the table

• The value of a calculated column is computed during data refresh and uses the current row as a
context; it does not depend on user activity on the pivot table.

• A measure operates on aggregations of data defined by the current context

When to use
Calculated Columns Measures

• Place the calculated results in a Slicer, or see
results in Rows or Columns in a pivot table (as
opposed to the Values area), or use the result
as a filter condition in a DAX query.

• Define an expression that is strictly bound to
the current row. (For example, Price * Quantity
cannot work on an average or on a sum of the
two columns.)

• Categorize text or numbers. (For example, a
range of values for a measure, a range of ages
of customers, such as 0–18, 18–25, and so on.

• When you calculate profit percentage of a
table selection.

• When you calculate ratios of a product
compared to all products but keeping the filter
both by year and region

Calculated Tables
Most of the time you create a table using Power Query and import it to the Model View. Calculated

Tables allows you to create tables base on the data loaded in your model. You use DAX Table

functions to create Calculated Tables like: DISTINCT, VALUES, CROSSJOIN, and UNION.

40

41

Variables
Variables serves as containers that hold values that you frequently use. Variables are defined with

the VAR keyword. After you define a variable, you need to provide a RETURN section that defines

the result value of the expression. A variable defined in an expression cannot be used outside the

expression itself. Variables are computed using lazy evaluation.

Sales YoY Growth % =
VAR SalesPriorYear =
 CALCULATE([Sales], PARALLELPERIOD('Date'[Date], -12, MONTH))
RETURN
 DIVIDE(([Sales] - SalesPriorYear), SalesPriorYear)

The advantage of using variables are:

• Improve performance

• Improve readability

• Simplify debugging

• Reduce Complexity

Relationships
Relationship allows your table to be connected and create reference to each other. It allows you to

filter data across your tables. PowerBI autodetects relationships when you load your data.

Relationship Cardinality
Cardinality is referred to the relationship between tables. It defines how many instances of one

entity are related to instances of another entity. There are four (4) types of cardinality:

• Many to one (*:1): A many-to-one relationship is the most common, default type of relationship. It
means the column in a given table can have more than one instance of a value, and the other related
table, often know as the lookup table, has only one instance of a value.

• One to one (1:1): In a one-to-one relationship, the column in one table has only one instance of a
particular value, and the other related table has only one instance of a particular value.

• One to many (1:*): In a one-to-many relationship, the column in one table has only one instance of a
particular value, and the other related table can have more than one instance of a value.

• Many to many (*:*): With composite models, you can establish a many-to-many relationship
between tables, which removes requirements for unique values in tables. It also removes previous
workarounds, such as introducing new tables only to establish relationships. For more information

42

Cross Filter Direction
Having relationship between tables allows you to create filter between them. In the model view,

aside from the relationship, you can also see the cross-filter direction. This allows you to set which

table can be used for filtering.

There are two types of Cross Filter:

• Both – For filtering purposes, both tables are treated as if they're a single table

• Single - The most common, default direction, which means filtering choices in connected tables
work on the table where values are being aggregated

Handling Many-to-Many Relationship
A many-to-many relationship is quite common in your model. For instance, there is always a many-

to-many relationship between a customer and a product in a sales system. A customer can buy many

products, and a product can end up in many customers' shopping bags. What happens in the sales

system is that when we go to the cashier to pay for the products we bought, the cashier scans each

product's barcode. So, the system now knows which customer bought which product.

Adding and Editing Relationships
You can create relationships by clicking the Manage Relationship icon in the menu. It will give you an

option to Add a new relationship, or edit an existing one.

43

PowerBI also allows you to drag and drop the fields that you want to use to create a relationship.

44

Chapter 4: DAX Functions
DAX (Data Analysis Expressions) have hundreds of built-in functions in PowerBI. These functions are

categorized according to their needs.

This module will not be covering all these functions. We will be discussing some commonly used.

Table functions
Table functions are regular DAX functions that—instead of returning a single value—return a table.

These functions are used to create Calculated Tables. Table functions are useful when writing both

DAX queries and many advanced calculations that require iterating over tables. Examples of Table

functions are:

• FILTER

• ALL

• ALLEXCEPT

• VALUES

• DISTINCT

• ALLSELECTED

FILTER Function

The FILTER function returns a table that represents a subset of another table or expression.

FILTER(<table>,<filter>)

The first argument is the table you want to filter, then the filter condition to apply.

FILTER('InternetSales_USD',
RELATED('SalesTerritory'[SalesTerritoryCountry])<>"United States")

ALL and ALLEXCEPT

The ALL Function returns all the rows of a table or all the values of one or more columns, depending

on the parameters used. ALL is extremely useful whenever we need to compute percentages or

ratios because it ignores the filters automatically introduced by a report.

ALL([<table> | <column>[, <column>[, <column>[,…]]]])

= SUMX(ResellerSales_USD,

ResellerSales_USD[SalesAmount_USD])/SUMX(ALL(ResellerSales_USD),
ResellerSales_USD[SalesAmount_USD])

ALLEXCEPT function Removes all context filters in the table except filters that have been applied to

the specified columns. The function returns a table with all filters removed except for the filters on

the specified columns.

ALLEXCEPT(<table>,<column>[,<column>[,…]])

45

= CALCULATE(SUM(ResellerSales_USD[SalesAmount_USD]), ALLEXCEPT(DateTime,

DateTime[CalendarYear]))

VALUE and DISTINCT

VALUE and DISTINCT function return a list of unique values for a column. Both functions are almost

identical, the only difference being in how they handle the blank row that might exist in a table.

DISTINCT always returns all the distinct values of a column. On the other hand, VALUES returns only

the distinct visible values. VALUES considers the blank row as a valid row, and it returns it. On the

other hand, DISTINCT does not return it.

VALUES(<TableNameOrColumnName>)

DISTINCT(<column>)

DISTINCT(<table>)

ALLSELECTED

This function removes context filters from columns and rows in the current query, while retaining all

other context filters or explicit filters. This returns the context of the query without any column and

row filters.

The ALLSELECTED function gets the context that represents all rows and columns in the query, while

keeping explicit filters and contexts other than row and column filters. This function can be used to

obtain visual totals in queries.

ALLSELECTED([<tableName> | <columnName>[, <columnName>[, <columnName>[,…]]]])

CALCULATE and CALCULATETABLE

Both functions are used to evaluate an expression in a modified filter context. The CALCULATETABLE

function performs exactly the same functionality and CALCULATE, except it modifies the filter

context applied to an expression that returns a table object.

CALCULATE(<expression>[, <filter1> [, <filter2> [, …]]])

CALCULATETABLE(<expression>[, <filter1> [, <filter2> [, …]]])

The example shows how the CALCULATE function works.

46

Things to remember about CALCULATE

• CALCULATE makes a copy of the current filter context.

• CALCULATE evaluates each filter argument and produces, for each condition, the list of valid values
for the specified columns.

• If two or more filter arguments affect the same column, they are merged together using an AND
operator (or using the set intersection in mathematical terms).

• CALCULATE uses the new condition to replace existing filters on the columns in the model. If a column
already has a filter, then the new filter replaces the existing one. On the other hand, if the column
does not have a filter, then CALCULATE adds the new filter to the filter

• context.

• Once the new filter context is ready, CALCULATE applies the filter context to the model, and it
computes the first argument: the expression. In the end, CALCULATE restores the original filter
context, returning the computed result.

Iterator Functions
These functions enumerate all rows of a given table and evaluate a given expression for each row.

They provide you with flexibility and control over how your model calculations will summarize data.

Common iterator functions are:

• SUMX

• AVERAGEX

• MINX

• MAXX

• COUNTX

Aggregate vs Iterator Functions
There is a big difference on how these functions behave. Iterating functions go through every single

row of a table to add logic to each of these rows. Aggregating functions look at the entire column

left over after the context is placed in a formula.

Aggregating Function

Sales = SUM(ProductSales[ordersales])

47

Iterating Function

TotalSales = SUMX(ProductSales, Products[unitprice]* RELATED(ProductSales[orderqty]))

TotalSalesUpper = SUMX(ProductSales,IF([Total Sales] >1000,[Total Sales],0))

When to use?

• You can use aggregate function if you need to do a simple aggregation

Sales = SUM(ProductSales[ordersales])

• You can use iterating function if you need to make aggregation that includes some complex logic.

Sales = SUMX(ProductSales, Products[unitprice]* RELATED(ProductSales[orderqty]))

More DAX Functions

You can check all DAX functions from this link: https://learn.microsoft.com/en-us/dax/new-dax-functions

https://learn.microsoft.com/en-us/dax/new-dax-functions

48

Chapter 5: M Language

Introduction to M Language
“M” stands for Mashup Language. This is the programming language used by Power Query. Creating

a M query can be useful in many ways which allows you to accomplish things that cannot be done in

a regulate query editor. M is a functional programming language, computation through evaluation of

mathematical functions. Programming involves writing expressions instead of statements. M does

not support changing state or mutable data. Every query is a single expression that returns a single

value. Every query has a return type. M Language is case sensitive. A query expression can reference

other queries by name.

Let Statement
Queries usually created using let statement. Here are some items you need to remember:

• Allows a single expressions to contain inner expressions

• Each line in let block represents a separate expression

• Each line in let block has variable which is named step

• Each line in let block requires comma at end except for last line

• Expression inside in block is returned as let statement value

Comments and Variable names
Creating comments in the query editor allows you to document your query properly. When you

comment a step, it allows you to not include it in your step.

Variable names with spaces must be enclosed in “#”. These variables are created automatically by

query designer.

49

Statement Evaluation
Since M language is a functional programming language, the order of the lines does not matter. This

can be executed depending on where the expression is triggered.

Data Types
M language have different data types assigned to variables. M language is strict in its data type,

which means it needs to assign the correct data type that will be used in the expression. There are

different data types:

• Primitive types, which classify primitive values (binary, date, datetime, datetimezone, duration, list,
logical, null, number, record, text, time, type) and also include a number of abstract types (function,
table, any, and none).

• Record types, which classify record values based on field names and value types.

• List types, which classify lists using a single item base type.

• Function types, which classify function values based on the types of their parameters and return
values

• Table types, which classify table values based on column names, column types, and keys

• Nullable types, which classifies the value null in addition to all the values classified by a base type

• Type types, which classify values that are types

50

Operators
Just like DAX, M language has its own operators that it uses to perform the operations. It also

follows an order of precedence when executed:

Types of operators arranged by precedence

• Primary – i, (), x[i],x{y}, x(..),{x,y,…},[i=x…]

• Unary - +x, -x, not x

• Metadata – x meta y

• Multiplicative - *,/

• Additive - +,-

• Relational - <, >, <, <=,>=

• Equality - =,<>

• Type assertion – x as y

• Type conformance – x is y

• Logical AND – x and y

• Logical OR – x or y

Conditional Statement
The if-expression selects from two expressions based on the value of a logical input value and

evaluates only the selected expression.

51

Custom Function Queries
You can create your own functions in M language. This allows you to reuse operations to improve

the performance of your query. We learned how to create custom functions in Power Query using

the graphical interface. Using M Language you can create a more flexible function that you can use

in your query.

To use your function, you need to invoke it from the Add Column tab.

52

Chapter 6: Data Visualization
The last part of your PowerBI journey is the Data Visualization. Data Visualization brings your data to

life. It should not just simplify your information, but to clarify them. Visualization gives meaning to

your data. Charts and graphs summarize your data. Being able to see the story within the numbers

makes data visualization a powerful tool for sharing and communicating information.

MS Office Store Visuals
PowerBI have built-in functions that you can use. You can also go to the Office Store to get custom

visuals.

Each visualization type can be used to represent your data effectively.

Chart Type When to use

Column It is used to compare values across categories.

Line This is used to display a trend over time

Pie It is best used to compare parts of a whole.

Bar It is best used to compare multiple value

Area Used to emphasize the difference between several data

points over a period of time.

53

Scatter It is used to determine the relationship between two

different parameters (X,Y).

Drill Through in Visuals
With drill through in Power BI reports, you can create a page in your report that focuses on a specific

entity. It allows you to go deeper into your data and see the breakdown of the data you set.

You need to setup a drill through page that has the visuals you want for the type of entity that you're

going to provide drill through for.

Drillthrough Page

54

Still in the drillthrouh page, in the field section of the Visualization pane, you can select the field that

will enable the drillthrough. For this example, we selected ShipCountry.

When you add the field in the drillthrough, you will notice that a back button is added to the page.

This allows users to go back to the previous page during drillthrough. This button will function when

the dashboard is published. When you are still in PowerBI Desktop, you can enable it by pressing and

holding the CTRL button.

You can set your own back image, and do some editing from the Format pane in the left navigation

pane.

You can now use your drillthrough page by going to a page where the ShipCountry field is being

used.

Right click the visualization and you will see a Drill through option. This will display the available

drillthrough pages in your dashboard.

55

In this example, we drill through by country selecting USA.

This should display the information for USA only.

Drill through pages is very useful in enhancing your data visualization. You can setup an Overview

page and have a drill through to see the more detailed information.

56

Chapter 7: Publishing your data
After completing your dashboard in your PowerBI Desktop, you are now ready to publish it to your

team using the PowerBI Services. You need to be logged in to your Microsoft account to be able to

share your dashboard.

Once published you will be notified that your dashboard is available.

You login to https://app.powerbi.com/ to check your published dashboards.

Row Level Security
RLS (Row Level Security) allows you to restrict data that can be given to users. Filters restrict data

access at the row level, and you can define filters within roles.

Define Roles
You can create and manage roles from PowerBi Desktop. By going to the Modeling tab, you can

select Manage Roles.

You need to select the table and apply the filter using DAX expression.

https://app.powerbi.com/

57

Validating Your Roles
To test your roles created, you can click the View as command. This will give you a list of your roles

and lets you select which role you want to view your dashboard as.

58

Enhanced Row-Level Security Editor
PowerBI gives us an easier way to create table filters. If you are not comfortable writing the DAX

expression, you can use the RLS Editor, which gives you a user interface that lets you easily add

filters.

To use this feature you need to Enable the preview by going to Files > Options and Settings >

Options > Preview features and turn on “Enhanced row-level security editor”.

Managing Security in your Model
Once you publish your dashboard you can start sharing it to you organization. With RLS, you are able

to restrict the users’ role to whom you share your dashboard.

59

Go to your workspace and locate the dataset you want to set. Click the ellipsis icon on the left side of

the Name column, and select Security.

You can select the Role and add the email of the user to that role, in this example we selected

German and assign user support@cocotechcebu.com to German role.

Considerations and limitations
You can see the current limitations for row-level security on cloud models here:

• If you previously defined roles and rules in the Power BI service, you must re-create them in Power BI
Desktop.

• You can define RLS only on the datasets created with Power BI Desktop. If you want to enable RLS for
datasets created with Excel, you must convert your files into Power BI Desktop (PBIX) files first. Learn
more.

• Service principals can't be added to an RLS role. Accordingly, RLS won’t be applied for apps using a
service principal as the final effective identity.

• Only Import and DirectQuery connections are supported. Live connections to Analysis Services are
handled in the on-premises model.

• The Test as role/View as role feature doesn't work for DirectQuery models with single sign-on (SSO)
enabled.

mailto:support@cocotechcebu.com

